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In these notes we present a purely algebraic proof, due to M. Rosen-
licht, of an 1835 theorem of Liouville on the existence of “elementary”
integrals of “elementary” functions (the precise meaning of elementary
will be specified). As an application we prove that the indefinite integral∫

ex2
dx cannot be expressed in terms of elementary functions.

Unless specifically stated to the contrary “ring” always means “com-
mutative ring with (a multiplicative) identity”. That identity is denoted
by 1 when the ring should be clear from context; by 1R when this may
not be the case and the ring is denoted R.
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1. Preliminaries on Meromorphic Functions

In this section K denotes the real field R or the complex field C.

When x is a single indeterminate over K one can regard a polynomial p(x) with
coefficients in K algebraically, i.e., as an entity within the integral domain K[x], or
analytically, i.e., as a function p : K → K. We adopt both views.

Analogous interpretations hold for elements p(x)/q(x) of the quotient field K(x)
but from the analytic perspective the function p/q is now best regarded as a map-
ping of K into K ∪ {∞}. Specifically, assuming w.l.o.g. that p(x) and q(x) have
no common irreducible factors the understanding will be that that a point k ∈ K
satisfying q(k) 6= 0 is mapped to p(k)/q(k) ∈ K and a point k ∈ K satisfying
q(k) = 0 is mapped to ∞.

We refer to R(x) and C(x) as the real and complex rational function fields re-
spectively, even when not interpreting the elements as functions.

Let U ⊂ K be non-empty and open and let k0 ∈ K. A function f : U → K∪{∞}
is:

• analytic at k0 if f is represented by a convergent power series on some open
disc within U centered at k0;

• meromorphic at k if for some integer n ≥ 0 the function k 7→ (k − k0)
nf(k)

is analytic at k0.

Of course these are the usual definitions when K = C.
Assuming the usual addition and multiplication of functions the collection M(U)

of meromorphic functions on a non-empty open set U becomes a field which will
always be viewed as an extension of K(x). Intermediate extensions K(x) ⊂ L ⊂
M(U), closed under the usual differentiation operator d/dx, will be our primary
concern.

Readers should note that the fields M(U) are free of “multi-valued” functions.
Unfortunately, to retain such exclusions it is sometimes necessary to shrink the do-
main U when adjoining new functions, e.g., antiderivatives of 1/x. However, restric-
tion to a smaller domain V induces a field embedding of M(U) into M(V ), thereby
enabling us to view M(U) ⊂ M(V ) as a field extension. One could always pass to
the germ level to avoid all reference to domains, but we prefer dealing with functions.
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2. Basic (Ordinary) Differential Algebra

Throughout the section R is a ring. The product rs of elements r, s ∈ R is occa-
sionally written r · s.

An additive group homomorphism δ : r ∈ R 7→ r ′ ∈ R is a derivation if the
Leibniz rule

(rs) ′ = r · s ′ + r ′ · s(2.1)

holds for all r, s ∈ R ; when δ is understood one simply refers to “the derivation
r 7→ r ′ (on R)”. Using (2.1) and induction one sees that

(rn) ′ = nrn−1 · r ′, 1 ≤ n ∈ Z.(2.2)

A differential ring consists of a ring R and a derivation1 δR : R → R. When
(R, δR) and (S, δS) are such a ring homomorphism ϕ : R → S is a morphism of
differential rings when ϕ commutes with the derivations, i.e., when

δS ◦ ϕ = ϕ ◦ δR .(2.3)

In particular, the collection of differential rings constitutes the objects of a category;
morphisms of differential rings form the morphisms thereof. An ideal i of a differential
ring R is a differential ideal if i is “closed under the derivation”, i.e., if r ∈ i implies
r ′ ∈ i.

A differential field refers to a differential ring which is also field.

Examples 2.4 :

(a) The usual derivative d/dx gives the polynomial ring R[x] the structure of a
differential ring. More generally, when R[x] is the polynomial algebra over R
in a single variable x the mapping d/dx :

∑
j rjx

j 7→ ∑
j jrjx

j−1 is a derivation
on R[x], and thereby endows R[x] with the structure of a differential ring.

(b) When K = R or C the usual differentiation operator d/dx endows the field
K(x) with the structure of a differential field (of functions, if this interpretation
is preferred), and this structure will always be assumed.

1More generally one can consider rings with many derivations, in which case what we have called
a differential ring would be called an “ordinary differential ring”. We have no need for the added
generality.
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(c) Suppose K = R or C and U ⊂ K is a non-empty open set. Then the usual
differentiation operator d/dx : M(U) → M(U) gives M(U) the structure of a
differential field, and this structure will always be assumed.

(d) The mapping r ∈ R 7→ 0 ∈ R is a derivation on R; this is the trivial derivation .

(e) The kernel of any morphism ϕ : R → S of differential rings, i.e., the kernel of
the underlying ring homomorphism, is a differential ideal of R.

(f) When i is a differential ideal of a differential ring R the quotient R/i becomes
a differential ring in the expected way, and when this structure is assumed the
quotient mapping R → R/i becomes a morphism of differential rings.

(g) The only derivation on a finite field is the trivial derivation. Indeed, when K is
a finite-field of characteristic p > 0 the Frobenius mapping k ∈ K 7→ kp ∈ K
is an isomorphism, and as a result any k ∈ K has the form k = `p for some
` ∈ K. By (2.2) we then have k ′ = (`p) ′ = p` p−1` ′ = 0, and the assertion
follows.

Suppose R is

• a differential ring with derivation δ,

• a subring of a differential ring S with derivation δS, and

• δS|R = δR;

then R is a differential subring of S, S ⊃ R is a differential ring extension, the
derivation δR on R is said to extend to (the derivation δS on) S, and δS is said
to be an extension of δR. Of course in the first two definitions “ring” is replaced by
“integral domain” or “field” when R and S have that structure.

Examples 2.5 :

(a) The kernel RC of a derivation on R is a differential subring of R, and is a
differential subfield when R is a field. Moreover, RC contains the prime ring
of R, i.e., the image of Z under the mapping n ∈ Z 7→ n · 1R ∈ R. The
verifications of these assertions are elementary. RC is the ring (resp. field) of
constants of R.

(b) Suppose K = R or C and U ⊂ K is a non-empty open set. Then K(x) ⊂
M(U) is a differential field extension.
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(c) Suppose R is an integral domain and QR is the associated quotient field. Then
any derivation δ : r → r ′ on R extends to QR via the quotient rule (r/s) ′ :=
(sr ′ − rs ′)/s2, and this is the unique extension of δ to QR. The verifications
(that this extension is well-defined and unique) are again elementary.

In the subject of differential algebra the characteristic of field under discussion
plays a very important role. The following result suggests why this is the case.

Proposition 2.6 : Suppose K is a differential field with a non-trivial derivation.

(a) When K has characteristic 0 every element of K\KC is transcendental over
KC. In particular, the differential field extension KC ⊂ K is not algebraic.

(b) When K has characteristic p > 0 every element of K\KC is algebraic over
KC. In particular, the field extension KC ⊂ K is algebraic.

Proof :
(a) Assume some element ` ∈ L\K is algebraic over KC and let p(x) = xn +∑m

j=0 cjx
j ∈ KC [x] denote the monic irreducible polynomial of `. Here 0 ≤ m < n

and w.l.o.g. cm 6= 0; otherwise `n = 0, which would yield the contradiction 0 = ` ∈
KC . Differentiating 0 = p(`) gives

0 = n`n−1` ′ +
∑n−1

j=0 jcj`
n−1` ′

= n` ′
(
`n−1 +

∑m
j=0 j(cj/n)`n−1

)
,

and from ` ′ 6= 0 and the characteristic 0 assumption this forces `n−1+
∑m

j=0 j(cj/n)`n−1

= 0, thereby contradicting the minimality of p(x).
(b) From (kp) ′ = pkp−1k ′ = 0 one sees that kp ∈ KC for any k ∈ K\KC .

q.e.d.
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3. Differential Ring Extensions with No New

Constants

In this section S ⊂ R is an extension of differential rings; the derivations on both
rings are written t 7→ t ′.

Note that RC ⊂ SC .

Proposition 3.1 : When R ⊂ S is an extension of differential rings the following
statements are equivalent:

(a) (“no new constants”) RC = SC;

(b) if r ∈ R (already) admits a primitive in R then r does not admit a primitive
in S\R; and

(c) if s ∈ S\R satisfies s ′ ∈ R then s ′ has no primitive in R.

Ring (or field) extensions satisfying any (and therefore all) of these conditions are
called no new constant extensions. They should be regarded as “economical”: they
do not introduce antiderivatives for elements of R which can already be integrated
in R.

Proof :
(a) ⇒ (b) : When r ∈ R admits a primitive t ∈ R as well as a primitive s ∈ S\R

the element s− t ∈ S\R is a constant, thereby contradicting (a).
(b) ⇒ (a) : When (a) fails there is a constant s ∈ S\R, i.e., a primitive for 0 ∈ R.

Since 0 ∈ R is also a primitive for 0 this contradicts (b).
The equivalence of (b) and (c) is clear.

q.e.d.

Examples 3.2 :

(a) To see an example of a differential extension introducing new constants consider
the differential ring extension R[x] ⊂ L, where L is any field of complex-valued
differentiable functions (in the standard sense) of the real variable x containing
exp ix. Here R[x]C = R, and from i = (exp ix) ′/ exp ix ∈ L\R[x] we conclude
that LC = C is a proper extension of R[x]C .

7



(b) Suppose K = R or C and U ⊂ K is a non-empty open set. Then the
constants of the differential field M(U) are the locally constant functions, i.e.,
the functions constant on connected components of U . In particular, when U
is connected the differential field extension K(x) ⊂ M(U) is a no new constant
extension.

Proposition 3.3 : Suppose K ⊂ L is a no new constant differential extension
of fields of characteristic 0 and ` ∈ L\K satisfies ` ′ ∈ K. Then the following
assertions hold.

(a) ` is transcendental over K.

(b) For any polynomial p(x) =
∑n

j=0 kjx
j degree n > 1 the derivative (p(`)) ′ of

the element p(`) :=
∑n

j=0 kj`
j ∈ L can be written in the form q(`) where :

q(x) ∈ K[x] ; deg(q(x)) = n if and only if the leading coefficient kn of p(x) is
not a constant ; and deg(q(x)) = n− 1 otherwise.

Proof : We will derive (a) is a consequence of (b), and for this reason establish the
assertions in reverse order.

(b) The first and second statements are seen by writing

(p(`)) ′ = k ′n`n + nkn`
n−1` ′ + k ′n−1`

n−1 + · · · + k ′0

in the form

k ′n`n + (k ′n−1 + nbkn)`n−1 + · · ·+ k ′0 = 0 , b := ` ′.

If kn ∈ KC and the final statement fails then 0 = k ′n−1 + nbkn = (kn−1 + nkn`) ′,
forcing kn−1 + nkn` ∈ KC ⊂ K. But from the characteristic 0 assumption this
implies ` ∈ K, contrary to the stated hypothesis.

(a) Otherwise ` is algebraic over K; let p(x) = xn +
∑n−1

j=0 kjx
j ∈ K[x] be the

monic irreducible polynomial. In the notation of (a) we have 1 = kn ∈ KC , whence
0 = (p(`)) ′ = q(`) where q(x) ∈ K[x] is of degree n− 1. Contradiction.

q.e.d.

Corollary 3.4 : Suppose K = R or C and U ⊂ K is a non-empty connected open
set. Then any meromorphic function f ∈ M(U)\K(x) with derivative f ′ in K(x)
is transcendental over K(x).
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Proof : The hypothesis f ′ ∈ K(x) easily implies that L := K(x)(f) is a differential
extension of K(x), and from Example 3.2(b) we see that this extension has no new
constants. q.e.d.

The following immediate consequence of this last result is well-known from ele-
mentary calculus, but one seldom sees a proof. It is implicit in the statement that
the relevant domains are open and connected and, in the complex case, allows for a
single-valued logarithm function.

Corollary 3.5 : The real and complex natural logarithm functions are transcendental
over the rational function fields R(x) and C(x) respectively, and the real arctangent
function is transcendental over R(x).

Proposition 3.6 : Suppose K ⊂ L is a no new constant differential extension of
fields of characteristic 0 and ` ∈ L\K satisfies ` ′/` ∈ K. Then:

(a) ` is algebraic over K if and only if `n ∈ K for some integer n > 1; and

(b) when (a) is not the case the derivative (p(`)) ′ of any polynomial p(`) =∑n
j=0 kj`

j ∈ K[`] of degree n > 0 is again a polynomial of degree n, and
is a multiple of p(`) if and only if p(`) is a monomial.

Proof : Let b := ` ′/` ∈ K and note from the no new constant hypothesis that
b 6= 0.

(a) Assuming ` is algebraic over K let tn + cmtm + · · ·+ c0 ∈ K[t] be the corre-
sponding irreducible polynomial, where n ≥ 1 and 0 ≤ m < n. If all cj vanish then
` = 0, resulting in the contraction ` ∈ K, and we may therefore assume cm 6= 0.
Differentiating

(i) `n + cm`m + · · ·+ c0 = 0

now gives

(ii) bn`n + (c ′m + bmcm)`m + · · ·+ c ′0 = 0 .

Multiplying (i) by bn and subtracting from (ii) results in a lower degree polyno-
mial relation for ` unless c ′m+mbcm = bncm , which in turn implies c ′m/cm = (n−m)b.
It follows that
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(cm`m−n) ′

cm`m−n
=

(m− n)cm`n−m−1b` + c ′m`n−m

cm`m−n

=
(m− n)bcm`m−n + c ′m`m−n

cm`m−n

= (m− n)b + c ′m/cm

= 0 .

This gives cm`m−n ∈ LC = KC ⊂ K, hence `n−m ∈ K, and from the minimality of
n we conclude that `n ∈ K.

The converse is obvious.
(b) Write (p(`)) ′ in the form

(k ′n + bnkn)`n + · · ·+ kpr0 = 0 .

If 0 = k ′n + bnkn = (kn`
n) ′ then kn`n ∈ KC ∈ K, and here the transcendency

contradiction is `n ∈ K. The assertion on the degree of (p(`)) ′ is thereby established.
By virtually the same argument we see that (k`n) ′ = k̂`n, where 0 6= k̂ :=

k ′ + nbk ∈ K, showing that (p(`)) ′ is a multiple of p(`) when p(`) is a monomial.
Conversely, suppose (p(`)) ′ = q(`)p(`). Then then equality of the degrees of p(`)

and (p(`)) ′ implies c := q(`) ∈ K. If p(`) is not a monomial let kn`
n and km`m be

two distinct nonzero terms and note from (p(`)) ′ = cp(`) that

k ′j + jkjb = ckj for j = n,m .

This implies

k ′n + nknb

kn

=
k ′m + mkmb

km

,

which in turn reduces to

a := (n−m)knkmb + kmk ′n − knk ′m = 0 .

But direct calculation then gives
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(
kn`

n

km`m

) ′
=

a `n+m

(km`m)2
= 0 ,

hence kn`n

km`m ∈ KC ⊂ K, and once again we have a contradiction to the transcendency
assumption on `. We conclude that p(`) must be a monomial when (p(`)) ′ is a
multiple of p(`), and the proof is complete.

q.e.d.

Corollary 3.7 : For any non zero rational function g(x) ∈ R(x) the composition
exp g(x) is transcendental over the rational function field R(x).

Proof : This is immediate from Proposition 3.6(a) since no non zero integer power
of exp g(x) is contained in R(x). q.e.d.
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4. Extending Derivations

Throughout the section K ⊂ L is an extension of fields and δ : k 7→ k ′ is a derivation
on K.

We will be concerned with extending δ to a derivation on L and to this end it
first proves useful to generalize the definition of a derivation. Specially, let R be a
ring, let A be an R-algebra (by which we mean a left and right R-algebra), and
let M be an R-module (by which we always mean a left and right R-module). An
R-linear mapping δ : A → M is an R-derivation (of A into M) if the Leibniz rule

δ(ab) = a · δ(b) + δ(a) · b(4.1)

holds for all a, b ∈ A. For example, any derivation δ : R → R can be regarded as
an RC-derivation of R into the R-module R; additional examples can be seen from
the discussion of CASE I below. The abbreviations δa and a ′ are also used in this
context, and extensions of such mappings have the obvious meaning.

Now choose any element ` ∈ L\K. We first extend δ : K → K to a KC-
derivation δ : K(`) → L by examining the transcendental and algebraic cases sepa-
rately.

CASE I: ` is transcendental over K.

In this instance the collection {`n}n≥0 is a K-space basis for the K-
algebra K[`], and as result any a ∈ K[`] has a unique representation as a
finite K-linear combination a =

∑
j aj`

j. Given a derivation k 7→ k ′ from
K into L and an arbitrary element m ∈ L define a K-linear mapping
δ : K[`] → L by

δ : a =
∑

jaj`
j 7→ ∑

ja
′
j`

j +
∑

jjaj`
j−1m.

Note, in particular, that

δ(`) = m.

We claim that δ is a K[`]-derivation of K[`] into L extending the original
derivation δ : K → L. Indeed, that δ is a K-linear function extending
the given derivation is clear; what requires verification is the Leibnitz rule.
To this end write a =

∑
i ai`

i and choose any element b =
∑

j bj`
j ∈ L[`].
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As preliminary observations note that

(
∑

iai`
i)(

∑
jjbj`

j−1) =
∑

ijjaibj`
i+j−1

=
∑

k(
∑

i(k − i)aibk−i)`
k−1

=
∑

k k(
∑

i aibk−i)`
k−1 −∑

k(
∑

i iaibk−i)`
k−1

and that

(
∑

kiai`
i−1)(

∑
jbj`

j) =
∑

ij iaibj`
i+j−1

=
∑

k(
∑

iiaibk−i)`
k−1 ,

and as a consequence we have

(i)

{ ∑
k k(

∑
i aibk−i)`

k−1

= (
∑

iai`
i)(

∑
jjbj`

j−1) + (
∑

kiai`
i−1)(

∑
jbj`

j) .

With the aid of (i) we then see that

(ab) ′ =
(∑

k(
∑k

i=0(aibk−i))`
k
) ′

=
∑

k(
∑k

i=0(aibk−i)
′)`k +

∑
k k(

∑k
i=0(aibk−i))`

k−1m

=
∑

k(
∑k

i=0(aib
′
k−i + a ′ibk−i))`

k

+ (
∑

iai`
i)(

∑
jjbj`

j−1m) + (
∑

kiai`
i−1m)(

∑
jbj`

j)

= (
∑

i ai`
i)(

∑
j b ′j`

j) + (
∑

i a
′
i`

i)(
∑

j bj`
j)

+ (
∑

iai`
i)(

∑
jjbj`

j−1m) + (
∑

kiai`
i−1m)(

∑
jbj`

j)

= (
∑

iai`i)(
∑

jb
′
j`

j +
∑

jjbj`
j−1m)

+ (
∑

ia
′
i`

i +
∑

iiai`
i−1m)(

∑
jbj`

j)

= ab ′ + a ′b ,

and the claim is thereby established.
In summary, when ` ∈ L\K is transcendental over K any derivation

from K into L extends to a K[`]-derivation of K[`] into L. Moreover,
for any m ∈ L there is an extension satisfying ` ′ = m.

CASE II: ` is algebraic over K.
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First recall (from elementary field theory that) this implies

(i) K[`] = K(`).

Assume in addition that ` is separable over K and let p(t) = tn +∑n−1
j=0 kjt

j ∈ K[t] denote the associated monic irreducible polynomial. If
a given derivation k → k ′ on K can be extended to a K0-derivation of
K[`] into L then from p(`) = 0 we see that

0 = (p(`)) ′

= n`n−1` ′ +
∑

jkj`
j−1` ′ +

∑
k ′j`

j

= ` ′(n`n−1 +
∑

jkj`
j−1) +

∑
k ′j`

j

= ` ′(p ′(`)) +
∑

k ′j`
j .

From the separability hypothesis we have p ′(t) 6= 0, and since p(t) has
minimal degree w.r.t. p(`) = 0 it follows that p ′(`) 6= 0. The calculation
thus implies

` ′ =
−∑m

j=0 k ′j`
j

p ′(`)
.(ii)

We conclude that there is at most one extension of the given derivation on
K to a KC-derivation of K[`] into L, and if such an extension exists (ii)
must hold and (as a result) the image must be contained in K[`]. This is in
stark contrast to the situation studied in CASE I, wherein the extensions
were parameterized by the elements m ∈ L.

To verify that an extension does exist for each derivation k 7→ k ′

on K it proves convenient to define D̂q(t) ∈ K[t], for any polynomial
q(t) =

∑
j ajt

y ∈ K[t], by D̂q(t) =
∑

j a ′jt
j ∈ K[t]. Notice this enables us

to write (ii) as

α ′ =
−D̂p(`)

p ′(`)
.(iii)

In fact D̂ : q(t) 7→ D̂q(t) is a KC-derivation of K[t] into K[t]: it is the
extension of k 7→ k ′ obtained from the choice m = 0 in CASE I.

Now note from (i) that we can find a polynomial s(t) ∈ K[t] such that
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s(α) =
−D̂p(α)

p ′(α)
∈ K[α] ;(iv)

we define a mapping Ď : K[t] → K[t] (read Ď as “D check”) by

Ď : q(t) 7→ D̂q(t) + s(t)q ′(t) .

It is clear that Ď is KC-linear, and from the derivation properties of
q(t) 7→ D̂q(t) and q(t) 7→ q ′(t) we see that for any r(t) ∈ K[t] we have

Ď(q(t)r(t)) = D̂(q(t)r(t)) + s(t)(q(t)r(t)) ′

= q(t)D̂r(t) + D̂q(t)r(t) + s(t)(q(t)r ′(t) + q ′(t)r(t))

= q(t)
(
D̂r(t) + s(t)r ′(t)

)
+

(
D̂q(t) + s(t)q ′(t)

)
r(t)

= q(t)Ďr(t) + Ďq(t)r(t) .

We conclude that Ď is a K0-derivation of K[t] into K[t].
Now let η : K[t] → L denote the “substitution” homomorphism

q(t) ∈ K[t] 7→ q(`) ∈ L, set I := ker(η), and note that I ⊂ K[t] can
also be described as the principal ideal generated by p(t). Any q(t) ∈ I
therefore has the form q(t) = p(t)r(t) for some r(t) ∈ K[t], and by
substituting p(t) for q(t) in the previous calculation we see that

Ďq(t) = Ď(p(t)r(t))

= p(t)D̂r(t) + D̂p(t)r(t) + s(t)(p(t)r ′(t) + p ′(t)r(t)) .

Evaluating t at ` and using (iv) then gives

Ďq(`) = p(`)D̂r(`) + D̂p(`)r(`) + s(`) (p(`)r ′(`) + p ′(`)r(`))

= 0 · D̂r(`) + D̂p(`)r(`) + s(`) · 0 · r ′(`) + s(`)p ′(`)r(`)

=
(
D̂p(`) + s(`)p ′(`)

)
r(`)

=
(
D̂p(`) + −D̂p(`)

p ′(`) p ′(`)
)

r(`)

= 0
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from which we see that Ď(I) ⊂ I. It follows immediately that Ď induces
a KC-linear mapping D : K[`] → K[α], i.e., that a KC-linear mapping
D : K[`] → K[`] is well-defined by

Dq(`) := η(Ďq(t)) , q(`) ∈ K[`] .

Using the derivation properties of Ď and the ring homomorphism prop-
erties of η we observe that for any q(`), r(`) ∈ K[`] we have

D(q(`)r(`)) = η(Ď(q(t)r(t)))

= η( q(t)Ďr(t) + Ďq(t)r(t) )

= η(q(t))η(Ďr(t)) + η(Ďq(t))η(r(t))

= q(`)Dr(`) + Dq(`)r(`) .

We conclude that D : K[`] → K[`] is a K0-derivation, obviously extend-
ing k → k ′.

In summary: when ` ∈ L\K is separable algebraic over K any deriva-
tion k → k ′ on K has a unique extension to the field K(`) = K[`].
Moreover, the derivative of ` within this extension is given by (ii), wherein
p(t) = tn +

∑n−1
j=0 kjt

j ∈ K[t] denotes the monic irreducible polynomial of
`.

Theorem 4.2 : When K ⊂ L is an extension of fields of characteristic zero and
δ : K → K is a derivation the following statements hold.

(a) δ extends to a derivation δL : L → L.

(b) When ` ∈ L\K is transcendental over K and m ∈ L is arbitrary one can
choose the extension δL so as to satisfy δL(`) = m.

(c) When K ⊂ L is algebraic the extension δL : L → L of (a) is unique.

(d) When K ⊂ L is algebraic the extension δL : L → L of (a) commutes with
every automorphism of L over K (i.e., with every automorphism of L which
fixes K pointwise).

Proof :
(a) When K ⊂ L is a simple extension this is immediate from the preceding

discussion. (The separability condition required in CASE II is immediate from the
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characteristic zero assumption.) The remainder of the argument is a routine applica-
tion of Zorn’s lemma.

(b) Immediate from the discussion of CASE I.
(c) Immediate from the discussion of CASE II.
(d) When σ : L → L is an automorphism over K one sees easily that σ◦δL◦σ−1

is a derivation of L extending δ, and therefore coincides with δL by (c).
q.e.d.
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5. Integration in Finite Terms

Throughout the section K denotes a differential field of characteristic 0.

In this section we formulate and prove2 the result of J. Liouville mentioned in the
introduction and as an application show that one cannot integrate exp(x2) in terms
of “elementary functions”. A precise definition of such entities is the first order of
business.

Let K be a differential field. An element ` ∈ K is a logarithm of an element
k ∈ K, and k an exponential of `, if ` ′ = k ′/k. When this is the case it is customary
to write ` as ln k and/or k as e` ; one then has the expected formulas

(ln k) ′ = k ′/k and (e`) ′ = e` ` ′ .(5.1)

For any k ∈ K one refers to the element k ′/k ∈ K as the logarithmic derivative of
k. These definitions are obvious generalizations of concepts from elementary calculus,
and examples are therefore omitted. Notice by induction and the Leibniz rule that for
any nonzero k1, . . . , kn ∈ K and any (not necessarily positive) integers m1, . . . , mn

one has the logarithmic derivative identity

(Πn
j=1k

mj

j ) ′

Πn
j=1k

mj

j

=
n∑

j=1

mj

k ′j
kj

.(5.2)

Now let K ⊂ K(`) be a non trivial simple differential field extension. One says
that K(`) is obtained from K by

(a) the adjunction of an algebraic element over K when ` algebraic over K, by

(b) the adjunction of a logarithm of an element of K when ` = ln k for some
k ∈ K, or by

(c) the adjunction of an exponential of an element of K when ` = ek for some
k ∈ K.

A differential field extension K ⊂ L is elementary if there is a finite sequence of
intermediate differential field extensions K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = L such that
each Kj ⊂ Kj+1 has one of these three forms, and when this is the case any ` ∈ L is

2Our argument is from [Ros2], which is adapted from [Ros1]. A generalization of Liouville’s
Theorem 5.3 can be found in [Ros3]; for the original formulation see [Liouville]. Our application is
also found in [Mead].
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said to be elementary over K. By an elementary function we mean an element of an
elementary differential field extension R(x) ⊂ L wherein R = R or C, the elements
of L are functions (in the sense of elementary calculus), and the standard derivative
is assumed.

Theorem 5.3 (Liouville) : Let K be a differential field of characteristic 0 and
suppose α ∈ K has no primitive in K. Then α has a primitive within an elementary
no new constant differential field extension of K if and only if there is an integer
m ≥ 1, a collection of constants c1, . . . , cm ∈ KC, and elements β1, . . . , βm, γ ∈ K
such that

α =
∑

m
j=1cj

β ′
j

βj

+ γ ′ .(i)

Proof (M. Rosenlicht) :
⇒ By assumption there is a tower K = K0 ⊂ K1 ⊂ · · · ⊂ Kn of differential field

extensions such that each Kj with j ≥ 1 is obtained from Kj−1 by the adjunction of
an algebraic element over Kj−1, a logarithm of an element of K, or the exponential
of an element in K. Moreover, there is an element ρ ∈ Kn such that ρ ′ = α.

We argue by induction on the “length” n of an elementary extension, first noting
that when n = 0 the desired equality holds by taking m = 1, c1 = 0, and γ := ρ. If
n > 0 and the result holds for n−1 we can view α as an element of K1 and thereby
apply the induction hypothesis to the elementary extension K1 ⊂ Kn, obtaining a
non-negative integer m, constants c1, . . . , cm, and elements β1, . . . , βm, γ ∈ K1 such
that the displayed equation of the theorem statement holds. We are thereby reduced
to proving the following result: If α ∈ K can be written as displayed above, with γ
and all βj in K(`) = K1, then it can also be expressed in this form, although possibly
with a different m, with the corresponding γ and βj now contained in K.

Case (a) : ` is algebraic over K.

First note that in this case we have K(`) = K[`].
Choose an algebraic closure Ka of K containing ` and let σi : K[`] → Ka , i =

1, . . . , s , denote the distinct embeddings over K, where w.l.o.g. σ1 is inclusion. Then
the monic irreducible polynomial p(x) of ` must factor in Ka as p(x) = Πs

i=1(x−`i) .
Moreover, for any q(`) ∈ K[`] we obviously have σi(q(`)) = q(`i), and from Theorem
4.2(d) we see that σi((q(`))

′) = (q(`i))
′ holds as well, i = 1, . . . , s.
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Now choose polynomials q1, . . . , qn, r ∈ K[x] such that

βj = qj(`), j = 1, . . . , n, and γ = r(`)

and write (i) accordingly, i.e., as

α =
∑

j

(qj(`))
′

qj(`)
+ (r(`)) ′ .

Applying σi then gives

α =
∑

j

cj

σi(β
′
j )

σi(βj)
+ σi(γ

′)

=
∑

j

cj
(σi(βj))

′

σi(βj)
+ (σi(γ)) ′

=
∑

j

cj
(qj(`i))

′

qj(`i)
+ (r(`i))

′ ,

whereupon summing over i, dividing by s (which requires the characteristic 0 hy-
pothesis), and appealing to (5.2) yields

α =
n∑

j=1

cj

s

(Πs
i=1qj(`i))

′

Πs
i=1qj(`i)

+

(∑s
i=1 r(`i)

s

) ′
.

By construction the two terms on the right-hand-side of this equality are fixed by all
the embeddings σj : K(α) → Ka, which by the separability of K(`) ⊃ K (guaran-
teed by the characteristic zero hypothesis) implies they belong to K. In particular,
this last expression for α has the required form.

Having established Case (a) we may assume for the remainder of the proof that
` is transcendental over K. In this case we can find qj(`), r(`) such that βj = qj(`)
and γ = r(`), and thereby write

(ii) α =
n∑

j=1

cj
(qj(`))

′

qj(`)
+ (r(`)) ′ ,
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although initially it seems we must assume that r(`) and the qj(`) belong to K(`)
rather than to K[`]. But each qj(`) can be written in the form kjΠ

nj

i=1(qji(`))
nji ,

where kj ∈ K, qji(`) ∈ K[`] is monic and irreducible, and the nj and nji are integers
with nj > 0 (no such restriction occurs for the nij). The logarithmic identity (5.2)
then allows us to assume the qj(`) appearing in (ii) are either non-constant monic
irreducible polynomials in K[`] or elements of K.

Case (b) : ` is a logarithm of an element of K, i.e., ` ′ = k ′/k for some k ∈ K.

Let p(`) ∈ K[`] be non-constant, monic and irreducible. Then (p(`)) ′ ∈ K[`]
is easily seen to have degree strictly less than that of p(`), guaranteeing that p(`)
cannot divide (p(`)) ′. If in (ii) we have qj(`) = p(`) for some j then the quotient
(qj(`))

′/qj(`) already appears in lowest terms. In particular, if the polynomial p(`)

appears as a denominator in the sum
∑n

j=1 cj
(qj(`))

′

qj(`)
within (ii) then it will not appear

to a power greater than 1.
Now suppose p(`) occurs as a denominator in the partial fraction expansion of

r(`). Each such occurrence has the form f(`)/(p(`))m, where the degree of f(`) is
less than that of p(`). Let d ≥ 1 denote the maximal such m. The corresponding
terms of the partial fraction expansion of (r(`)) ′ then consist of (f(`)(1/p(`))d) ′ =
−d ·f(`)(p(`)) ′/(p(`))d+1 together with at most d terms having lower powers of p(`)
as denominators. Moreover, from the preceding paragraph we see that the remaining
terms on the right hand side of (ii) cannot contribute a denominator p(`) to any
power greater than 1, hence cannot cancel −d · f(`)(p(`)) ′/(p(`))d+1.

These considerations lead to the following conclusion. If in (ii) we have qj(`) =
p(`) for some j, and/or if p(`) occurs as a denominator in the partial fraction
expansion of r(`), then p(`) will occur as a denominator in the partial fraction
expansion of α. But that partial fraction expansion is unique and is obviously given
by α = α. The qj = qj(`) occurring in (ii) are therefore in K (as required), and
r(`) in that expression is a polynomial.

Now observe from (r(`)) ′ ∈ K and Proposition 3.3(b) (which requires the no new
constant hypothesis) that r(`) must have the form r(`) = c`+ ĉ, where c ∈ KC and
, ĉ ∈ K. Equality (ii) is thereby reduced to

α =
n∑

j=1

cj

q ′j
qj

+ c
k ′

k
+ ĉ ′ ,

precisely as desired.
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Case (c) : ` is an exponential of an element of K, i.e., ` ′/` = k ′ for some k ∈ K.

As in Case (b) let p(`) ∈ K[`] be non-constant, monic, and irreducible. From
Proposition 3.6 we see that for p(`) 6= ` we have (p(`)) ′ ∈ K[`] and that p(`) does
not divide (p(`)) ′; we can then argue as in the previous case to conclude that the
qj = qj(`) in (ii) are in K, with qj(`) = ` as a possible exception, and that r(`)
in that expression can be written in the form r(`) =

∑t
−t kj`

j, where t > 0 is an
integer and the coefficients kj are in K.

Since each quotient (qj(`))
′/qj(`) is in K the same holds for (r(`)) ′, whereupon

a second appeal to Proposition 3.6 gives r := r(`) ∈ K. If qj(`) 6= ` for all j we are
done, so assume w.l.o.g. that q1(`) = `. We can then write

α = c1
k ′

k
+

n∑
j=2

cj

q ′j
qj

+ r ′ =
n∑

j=2

cj

q ′j
qj

+ (c1k + r) ′ ,

which achieves the required form.
⇐ This is clear.

q.e.d.

Corollary 5.4 (Liouville) : Suppose E ⊂ K = E(eg) is a no new constant dif-
ferential extension of fields of characteristic 0 obtained by adjoining the exponential
of an element g ∈ E. Suppose in addition that eg is transcendental over E and let
f ∈ E be arbitrary. Then feg ∈ K has a primitive within some elementary no new
constant differential field extension of K if and only if there is an element a ∈ E
such that

f = a ′ + ag ′(i)

or, equivalently, such that

feg = (aeg) ′ .(ii)

Proof : To ease notation write eg as `.
⇒ By Theorem 5.3 the element f` ∈ K has a primitive as stated if and only if

there are elements cj ∈ KC = EC and elements γ and βj ∈ K, j = 1, . . . , n, such
that

f` =
n∑

j=1

cj

β ′
j

β
+ γ ′ .(iii)
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Now write γ as r(`) and βj as gj(`) and assume, as in the discussion surrounding
equation (ii) of the proof of Theorem 5.3, that the qj(`) are either non-constant monic
irreducible polynomials in K[`] or elements of E. Arguing as in Case (c) of that proof
(again with K replaced by E) we can then conclude that ` is both the only possible
monic irreducible factor in a denominator of the partial fraction expansion of r(`)
as well as the only possibility for a monic irreducible gj(`) ∈ K[`]\E. But this gives
(gj(`))

′/gj(`) ∈ E for all j as well as r(`) =
∑t

j=−t kj`
j, where t > 0 is an integer

and the coefficients kj are in E. In particular, (iii) can now be written

f` = c +
t∑

j=−t

k ′j`
j + g ′

t∑
j=−t

jkj`
j

and upon comparing coefficients of equal powers of ` we conclude that f` = k ′1+k1g
′.

Equation (i) then follows by taking a = k1.
⇐ When (i) holds aeg ∈ K is a primitive of feg.

q.e.d.

Corollary 5.5 : For R = R or C the function x ∈ R 7→ ex2 ∈ R has no elementary
primitive.

By an elementary primitive we mean a primitive within some elementary no new
constant differential field extension of R(x)(ex2

).

Proof : By Corollaries 3.5 and 5.4 the given function has an elementary primitive if
and only if there is a function a ∈ R(x) such that 1 = a ′ + 2ax.

There is no such function. To see this assume a = p/q ∈ K(x) satisfies this
equation, where w.l.o.g. p, q ∈ R[x] are relatively prime. Then 1 = a ′ + 2ax ⇒ 1 =
qp ′−q ′p

q2 + 2 · px
q
⇒ q2 = qp ′ − q ′p + 2xqp ⇒ q(q− 2px− p ′) = −q ′p ⇒ q|q ′p ⇒ q|q ′ ⇒

q ′ = 0, and q is therefore a constant polynomial, i.e., w.l.o.g. a = p. Comparing the
degrees in x on the two sides of 1 = a ′ + 2ax now results in a contradiction. q.e.d.

Remarks 5.6 :

(a) Additional examples of meromorphic functions without elementary primitives,
including sin z/z, are discussed in [Mead] and [Ros2, pp. 971-2]. The arguments
are easy (but not always obvious) modifications of the proof of Corollary 5.5.
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(b) One can (easily) produce an elementary differential field extension of the ra-
tional function field R(x) containing arctan x (we are assuming the standard
derivative), but not one with no new constants. Indeed, it is not hard to show
that 1/(x2 + 1) cannot be written in the form (i) of the statement Theorem
5.3 (see p. 598 of [Ros2]). This indicates the importance of the no new constant
hypothesis in the statement of Liouville’s Theorem.
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